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Abstract

Purpose – The aim of this paper is to introduce a new technique for convection visualization. This is
similar to Bejan’s heatlines and is even an exact match to Landau and Lifshitz’s energy streamlines
for two-dimensional geometries.
Design/methodology/approach – The work benefits from a combination of numerical and
analytical tools to show that, in two-dimensional space, heatlines and energy streamlines are
effectively the same. More importantly, the energy flux vectors are tracing both of them accurately; as
verified for some cases of free and forced convection problems in this paper.
Findings – The new technique is easier to implement compared to the existing counterparts which
are available in the literature. More specifically, the advantage of this new technique is that, contrary
to heatlines and energy streamlines, it does not require further numerical analysis in addition to
solving momentum and energy equations.
Originality/value – Energy flux vectors offer higher resolution compared to existing visualization tools.
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Introduction
According to Bejan (1984), it is crucial for the problem solver to have the chance to see
the results of his solution so that he will learn from experience and thus improve his
technique. This argument, put forward in 1983 by Kimura and Bejan (1983), led to the
invention of heatline and heatfunction concepts. Bejan (1984) highlights the fact that in
convection problems one should see the flow of fluid and, riding on this, the flow of
energy. In what follows Bejan’s heatline concept will be presented and applied to certain
cases. Numerical procedure that should be undertaken to obtain the heatline
distributions will also be discussed. Then, the application of Energy Flux Vectors, which
is a new visualization technique, will be put forward. Based on this concept, one would
still see the flow of energy without the need to solve a new set of numerical equations
(that is generally required to obtain heatline distribution). Moreover, it will be shown
that, applying the energy flux vectors the difficulty of formulating the appropriate
boundary conditions for heatlines and energy streamlines can be overcome.

Heatline definition
For a two-dimensional incompressible flow streamfunction  *(x*, y*) satisfies the
following mass continuity equation:

@u�
@x� þ

@v�
@y� ¼ 0 ð1Þ

Provided that:

@ �
@y� ¼ u�

@ �
@x� ¼ �v�

ð2a,bÞ
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It is also known that the flow is locally parallel to the  * ¼ constant line passing through
a point. Therefore, one can simply follow the streamlines to see the real flow path.

When it comes to a convection problem, with thermal radiation being neglected, one
remembers that the transport of energy through the flow field is a combination of
convection and conduction. The heatfunction, H*(x*, y*), concept is defined by Kimura
and Bejan (1983) in such a way that the net flow of energy (thermal diffusion and enthalpy
flow) is zero across each H* ¼ constant line. The difference between the values of two
adjacent heatlines provides the magnitude of the energy flowing through the region
bounded by the heatlines. Similar to the streamlines, heatlines also start and stop at
boundaries or circulate as vortex throughout the flow region. The steady two-dimensional
thermal energy equation for a fluid with constant density and specific heat is:

�cp u � @T�
@x� þ v � @T�

@y�

� �
¼ @

@x� k
@T�
@x�

� �
þ @

@y� k
@T�
@y�

� �
ð3Þ

This equation can be rearranged, by taking the mass continuity equation into account,
as:

@

@x� �cpu � T � �k
@T�
@x�

� �
þ @

@y� �cpv � T � �k
@T�
@y�

� �
¼ 0 ð4Þ

Then, it is easy to define a function H*(x*, y*) to satisfy the above equation, in a very
general form, as:

@

@x�
@H�
@y�

� �
þ @

@y� �
@H�
@x�

� �
¼ 0 ð5Þ

Comparing Equations (4) and (5), one finds that:

@H�
@y� ¼ �cpu � ðT � �Tref Þ � k

@T�
@x�

� @H�
@x� ¼ �cpv � ðT � �Tref Þ � k

@T�
@y�

ð6a,bÞ

Moreover, for the case of no flow (u* ¼ v* ¼ 0), the heatlines become identical to the
heat flux lines employed in the study of conduction heat transfer. According to Bejan
(1984), the use of heatlines in convection visualization is a generalization of a standard
technique (heat flux lines) used in conduction while the use of isotherms is reported as
an improper way to visualize heat transfer in the field of convection. Isotherms are a
proper heat transfer visualization tools only in the field of conduction (where, in fact,
they have been invented) because only there they are locally orthogonal to the true
direction of energy flow.

It is, unfortunately, impossible to solve the set of heatfunction equations, Equations
(6a,b) analytically when the boundary conditions or the geometry is complicated.
Another hindrance is when closed form solutions for velocity distribution is not
available or is too complicated.

Generally, one should undertake numerical techniques to solve Equations (6a,b).
One way to handle this is to find a Poisson equation by differentiating Equations (6a,b)
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with respect to y* and x*, respectively, and then eliminate the conduction terms. This is
a very popular approach as in this way one is left with the following single equation:

r2H� ¼ �cp
@

@y� u � ðT � �Tref Þ
� �

� @

@x� v � ðT � �Tref Þ
� �� �

ð7Þ

This is a Poisson equation that can be rearranged in terms of vorticity and
streamfunction as follows:

r2H� ¼ �cp
@ �
@y�

@ðT � �Tref Þ
@y� þ @ �

@x�
@ðT � �Tref Þ

@x� � ! � ðT � �Tref Þ
� �

ð8Þ

Either of the above equations, Equations (7) or (8), can be solved numerically based on
the available numerical techniques. One can also use the two segregate equations,
being Equations (6a) and (6b), and integrate them with respect to y* and x*,
respectively. This approach has been used by some researchers during the past
decades. One also notes that with the final form of governing equation for heatfunction
(that usually comes after the momentum and thermal energy equations) being fixed,
there are various numerical techniques that can be implemented, see Tannehill et al.
(1997) for a variety of such numerical schemes for elliptic, hyperbolic, or system of
equations. Commensurate with that is a number of different numerical approaches
reported in the literature (Costa, 1999, 2000, 2003a, b, 2005; Costa et al., 2005; Dash,
1996; De and Dalal, 2006; Deng and Tang, 2002a, b; Deng and Zhang, 2004; Deng et al.,
2004; Lage, 1992; Morega and Bejan, 1993, 1994; Mukhopadhyay et al., 2002, 2003; Sen
and Yang, 2000; Zhao et al., 2007a, b; Aggarwal and Manhapra, 1989; da Silva et al.,
2005; Oh et al., 1997; Waheed, 2006; Belloochende, 1988a, b; Incropera and DeWitt,
2002; Landau and Lifshitz, 1987; Mahmud and Fraser, 2005, 2007; Chapman, 2001;
Hooman et al., 2007; Hooman and Gurgenci, 2007, 2008a, b; Hooman et al., 2008, 2009;
Hooman and Gurgenci, 2008a, b; Mousavi and Hooman, 2006; Ejlali, 2009; Kaluri, 2009;
Mobdei and Oztop, 2008).

All of the above points towards a need for more numerical analysis to find the
heatfunction distribution throughout the flow region. This can be very time-consuming
when large number of grids is applied. Mainly for this reason, a new method for
convection visualization is to be presented in the next section that does not need
numerical analysis.

Energy flux vectors
Assume that the heatlines distribution is obtainable by a function H*(x*, y*) as defined
by Equation (6a,b). The idea is to define the vectors, to be called Energy Flux Vectors,
which are, locally, tangent to heatlines. The role played by such vectors in heatlines
visualization will be the same as the one by velocity vectors in streamlines scenario.

The gradient, ~NN �x�; y�

~NN �ðx�; y�Þ ¼ r � H� ¼ @H�
@x�

~ii þ @H�
@y�

~jj ð9Þ

shows the vector which is normal to H* in the two-dimensional x* y* plane with~ii;~jj
being the Cartesian unit vectors in x*,y* directions, respectively. The vector ~EE�ðx�; y�Þ
is normal to ~NN �ðx�; y�Þ when the scalar product ~EE� � ~NN�Þ is zero. Mathematically, this
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means that:

~EE � ðx�; y�Þ ¼ @H�
@y�

~ii � @H�
@x�

~jj ð10Þ

In terms of the velocity and the temperature it reads:

~EE�ðx�;y�Þ¼ �cpu�ðT ��Tref Þ� k
@T�
@x�

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Net energy flow in the x� direction

~iiþ �cpv�ðT ��Tref Þ� k
@T�
@y�

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Net energy flow in the y� direction

~jj ð11Þ

Such vectorial definition is more analogous to heat flow lines or adiabates of conduction,
as described by Incropera and Dewitt (2002), than Bejan’s heatline. Observe that this
vector has two components, in x* and y* directions, each showing the net energy
(convection þ conduction) in that direction. Mathematically, it makes sense to write:

~EE�ðx�; y�Þ ¼ E�x�
~ii þ E�y�

~jj ð12Þ

with the subscript of each component showing the energy flux direction. Note also that
this energy flux vector was called energy flux density vector and was used only as a basis
for energy streamline visualization as outlined by Landau and Lifshitz (1987) and applied
to different flow configurations by Mahmud and Fraser (2007). However, none of the
previous studies used these vectors to see the flow of energy. Studies concerned with
heatlines (Costa, 1999, 2000, 2003a, b, 2005; Costa et al., 2005; Dash, 1996; De and
Dalal, 2006; Deng and Tang, 2002a, b; Deng and Zhang, 2004; Deng et al., 2004; Lage,
1992; Morega and Bejan, 1993, 1994; Mukhopadhyay et al., 2002, 2003; Sen and
Yang, 2000; Zhao et al., 2007a, b; Aggarwal and Manhapra, 1989; da Silva et al., 2005; Oh
et al., 1997; Waheed, 2006; Belloochende, 1988a, b) have not mentioned these vectors (only
Mukhopadhyay et al., 2003 used a similar concept entitled enthalpy flux vectors for
validation of their enthalpy lines) while those on energy streamline tracking (Mahmud
and Fraser, 2005, 2007; Chapman, 2001) have skipped the use of them and applied the
energy streamlines for convection visualization. It should, however, be mentioned that
those studies aiming at energy streamlines do still need the solution to the partial
differential equation, Equation (1) of Mahmud and Fraser (2007):

r2E�SL ¼
@E�x�
@y�

~ii �
@E�y�
@x�

~jj ð13Þ

to obtain ESL* which is the shorthand notation for energy streamlines in their work. As
evidenced by Equation (11) energy flux vectors are readily obtained without further need
to perform a (usually demanding) numerical simulation as the required information is
readily available from the solution to the momentum and the thermal energy equation.

Energy streamlines, heatlines, and energy flux vectors
Before application to certain problems, it is instructive to note that the energy flux
vectors bridge the gap between the heatlines and energy streamlines, each of which
extensively used for visualization purpose. As these vectors are tangent to heatlines,
they show heatline paths. On the other hand, they form a basis for energy streamlines.
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One should be reminded that the role played by energy flux vectors in obtaining the
energy streamlines is analogous to that of vorticity in finding the streamlines. This can
be verified by comparing Equation (13) with

r2 � ¼ @u�
@y� �

@v�
@x� ð14Þ

Note that the right-hand-side of the above equation shows�!* where the vorticity, !*,
is obtainable by taking the curl of the velocity vector.

As noted earlier, in one hand, the energy flux vectors are defined to be tangent to
heatlines. On the other hand, based on streamline-velocity analogy, the energy flux
vectors are tangent to energy streamlines. Hence, for two-dimensional flows energy
streamlines and heatlines are effectively the same.

In view of the above, one can use energy flux vectors for convection visualization
without the need for further numerical calculations. As an example, some test cases
will be presented here.

Case studies
This section examines the application of energy flux vectors to certain problems solved
numerically with numerical details available in Hooman et al. (2007, 2009) and Hooman
and Gurgenci (2007, 2008a, b). As the first example, consider natural convection in a
cavity (with its right wall maintained at a temperature higher than that of the left wall
and horizontal adiabatic walls). Figure 1 compares the energy flux vectors and
heatlines based on the results reported in Hooman et al. (2007). As expected, energy
flux vectors are tangent to heatlines; hence, one can use them to see the heatline paths
instead of going through a difficult and time-consuming separate numerical
simulation. As noted earlier, considering Equations (13) and (14), one can claim that the
heatlines and energy streamlines are effectively the same for two-dimensional
problems. This can be easily verified by comparing the heatline and energy streamline
distribution in Figure 1 with Figure 2(b) of Mahmud and Fraser (2007).

Not to be restricted to clear-fluid cases, this time a solid matrix, for which the Darcy
number is Da ¼ 0.01, is inserted in the cavity (Hooman et al., 2007) for which the

Figure 1.
Heatlines and energy flux
vectors for Ra ¼ 104
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energy flux vectors and heatlines are shown in Figure 2. Once again, one observes that
the energy flux vectors are equally applicable for convection visualization purpose.
Another feature of considerable interest is that moving from top to bottom the sizes of
the vectors are decreasing/increasing near the cooled/heated wall, as indicated by
Figures 2(a) and (c), respectively. This is a unique ability of the proposed energy flux
vectors. This means, according to Figure 2(a), that the heat transfer rate to the cavity is
higher in the bottom half of the cavity. Figure 2(c), on the other hand, should be
interpreted as an indication of higher outflow of energy at the upper part of the cavity.
This could be explained by simply recalling the fact that heat rises. The details can be
explained as follows. At the bottom of the cavity the temperature is lower than the top
and this will enhance the conduction wall heat flux at the heated wall. A similar
analysis may be applied to explain the reason for higher heat transfer rate in the upper
half of the cavity height at the cooled (right) wall as illustrated by Figure 2(c).

Another interesting observation is the comparison between an isothermal wall and
an isoflux one. To show this in Figure 3, the left wall of the same cavity was replaced
by a uniformly heated one with the right wall still at a low temperature that is used as

Figure 2.
Heatlines and energy flux

vectors for Ra ¼ 104

Figure 3.
Zoomed view of (a) the
(isoflux) heated and (b)

(isothermal) cooled wall,
respectively
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Tref (see Hooman and Gurgenci, 2008a, b for more details). The isoflux Rayleigh
number is Raq ¼ 104. Figure 3(a) shows a zoomed view of the heated (right) wall while
Figure 3(b) does the same for the isothermally cooled one. Note the uniform
distribution of energy flux vectors near the isoflux wall while this uniform shape (due
to uniform inlet energy to the system) is replaced by a non-uniform distribution of
vectors at the cooled wall.

Finally, Figure 4 is presented to show heatlines (by drawing tangents to energy flux
vectors as Figure 4(c) specifically shows) for forced convection through a uniformly
heated channel. This figure illustrates the results of the developing and fully developed
(both thermally and hydrodynamically) region for two different Péclet numbers.
Numerical details are available in Hooman and Gurgenci (2008a, b; Hooman et al., 2008)
and are not repeated here for the sake of brevity. Figure 4(b) is comparable with
analytical results depicted by Figures 3-19 of Bejan (2004) for the fully developed
region. It should be mentioned that while the length scale used in Bejan (2004) is
different from that of this study, the Péclet number of Bejan (2004) (in terms of the data
used in Hooman and Gurgenci (2008a, b) and here) is Pe ¼ 8. Moreover, results of this
study are restricted to the bottom half of the channel due to symmetry (that can be
observed in Figures 3-19 of Bejan (2004) as well).

It is fruitful to note that the commercially available software Tecplot can place
streamlines on a vector field. In this study, Tecplot 360 (free trial version) was used to
place streamlines (here heatlines) on the energy flux vectors. Hence, the only thing that
the solver needs to do is to define the energy flux vectors in the program (a FORTRAN
program in this case as used in the previous papers written by this author (Hooman
et al., 2007, 2008, 2009; Hooman and Gurgenci, 2007, 2008a, b)) and load it in Tecplot.

Conclusion
In this article it was mathematically shown that in two-dimensional space heatlines
and energy streamlines, which were invented independently, are essentially the same
as each other. Moreover, a new technique is introduced to visualize convection heat
transfer. The advantage of this new technique is, on top of its higher resolution, that,

Figure 4.
Heatlines (obtained by
flux vectors) for different
Péclet numbers
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contrary to heatlines and energy streamlines, it does not require further numerical
calculation in addition to solving momentum and thermal energy equations. This in
turn, reduces the time and the computer resources required to see the flow of energy.
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